
Vulnerability Detection - Sanitizers

Aravind Machiry

Holistic Software Security

● How bugs affect program behavior?

○ If we have exhaustive test cases:

■ Actual output != Expected output.

○ In the absence of test cases, i.e., Fuzzing:

■ Memory errors: Program Crashes (SIGSEGV) => Access/Execute invalid memory.

■ There could be bugs which do not result in SIGSEGV.

Bug Manifestations

Here, if i == 2 (off by one error), the program may

not crash?

● Why?

Silent Bugs

 int main() {

 unsigned i, j, a[2];

 scanf(“%u %u”, &i, &j);

 a[i] = j;

 ...

 return 0;

 }

unsigned a[2]

i

Runtime Stack

Return Address

j

Here, if i == 2 (off by one error), the program may

not crash?

● Why?

Silent Bugs

 int main() {

 unsigned i, j, a[2];

 scanf(“%u %u”, &i, &j);

 a[i] = j;

 ...

 return 0;

 }

unsigned a[2]

i

Runtime Stack

Return Address

ja[2] =>

● The behavior of a bug, especially memory corruption, depends on the program state and execution

environment.

● Can we detect these bugs without relying on program state?

○ Fuzzing: we detect a bug if it results in the program crash (SIGSEGV).

○ Idea: Make all bugs result in program crashes.

Improving bug detection

● Change the program such that we detect bugs when they occur instead of waiting for the bugs to result in

crash.

● Mechanism: Instrument the program by adding additional checks for detecting bugs.

Sanitizers

Sanitizers: Overview

Instrumentation

Original Program Instrumented Program

Program with
additional Checks

 int main() {

 unsigned i, j, a[2];

 scanf(“%u %u”, &i, &j);

 a[i] = j;

 ...

 return 0;

 }

 int main() {

 unsigned i, j, a[2];

 scanf(“%u %u”, &i, &j);

 if (i < 2) {

 a[i] = j;

 } else { CRASH}

 ...

 return 0;

 }

Original Program

Instrumented Program

Array out-of-bounds Sanitizer

● Usually bug specific. Examples:

○ MemorySanitizer: Detects uninitialized reads.

○ AddressSanitizer: Detects invalid memory accesses.

● General instrumentation idea: At all instructions in the program where the bug can occur, add a

check to detect the bug.

○ AddressSanitizer: Detects Invalid Memory Accesses.

■ Invalid Memory access can occur at load and store instructions.

● Instrument every load and store to check if the used address is invalid (i.e., does not belong
to a program object).

Real world Sanitizers

Sanitizers: Usage

Instrumentation

Original Program Instrumented Program

Program with
additional Checks

 int main() {

 unsigned i, j, a[2];

 scanf(“%u %u”, &i, &j);

 a[i] = j;

 ...

 return 0;

 }

 int main() {

 unsigned i, j, a[2];

 scanf(“%u %u”, &i, &j);

 if (i < 2) {

 a[i] = j;

 } else { CRASH}

 ...

 return 0;

 }

Original Program

Instrumented Program

Array out-of-bounds Sanitizer

Fuzzer
Bug observed?

Why can’t we always use sanitizers?

They detect bugs at runtime => Why can’t we just use sanitizers and not worry about bugs, as they will

never lead to vulnerabilities.

Sanitizers introduce a lot of overhead.

Sanitizers Implementation
● Sanitizers need to maintain lot of additional state to check for the possibility of bugs.

○ AddressSanitizer: Detects Invalid Memory Accesses:

■ Need to maintain metadata regarding which memory (i.e., address) is valid v/s invalid.

■ Tricky: Handling dynamic memory allocation.

Popular research direction: Smart and efficient way to maintain metadata.

AddressSanitizer (ASan)
● Metadata (or shadow memory):

○ One eighth of the virtual memory will be used to maintain metadata:

■ One bit of metadata for each byte of application memory.

■ Bit is zero: The corresponding address is valid else invalid.

● Accessing metadata for a given address (Addr):
○ Direct Mapping:

// Checking 8-byte access

MetadataAddr = (Addr >> 3) + Offset;

if (*MetadataAddr != 0)

 ReportAndCrash(Addr);

ASan: Mapping

Unmapped Page.

Metadata Mapping:

(addr >> 3) + offset1

(addr >> 3) + offset2

offset1

offset2

ASan: Usage

void foo(T *a) {

*a = 0x1234;

}

push %rax

mov %rdi,%rax

shr $0x3,%rax

mov $0x100000000000,%rcx

or %rax,%rcx

cmpb $0x0,(%rcx) # Compare Shadow with 0

jne 23 <foo+0x23> # To Error

movq $0x1234,(%rdi) # Original store

pop %rax

retq

callq __asan_report_store8 # Error

clang -fsanitize=address a.c -c -DT=long

a.c

ASan: Conclusion
● One of the most popular sanitizers: Used extensively in fuzzing.

● Overhead:
○ Adds additional instructions:

■ Memory overhead: ~3X (Consumes thrice the amount of memory).

■ Slowdown: ~2X (Runs at half the speed).

ThreadSanitizer
● Detects data races.

● Where can data races happen i.e., which instructions it should track?

● How to detect a data race? What metadata should be maintained?

Other sanitizers (supported by clang)

● -fsanitize=address: AddressSanitizer, a memory error detector.

● -fsanitize=thread: ThreadSanitizer, a data race detector.

● -fsanitize=memory: MemorySanitizer, a detector of uninitialized reads. Requires instrumentation

of all program code.

● -fsanitize=undefined: UndefinedBehaviorSanitizer, a fast and compatible undefined behavior

checker.

● -fsanitize=dataflow: DataFlowSanitizer, a general data flow analysis.

Sanitizers: Final Thoughts
● They increase the ability of fuzzing to find bugs.

● Always use them with fuzzers: Performance impact does not matter much - lets throw more

machines.

● New sanitizers => Always appreciated and could have a high impact.

● Decreasing overhead of sanitizers: Appreciated but may have less impact.

