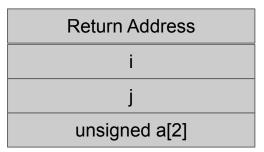
Vulnerability Detection - Sanitizers

Holistic Software Security

Aravind Machiry

Bug Manifestations

- How bugs affect program behavior?
 - If we have exhaustive test cases:
 - Actual output != Expected output.
 - In the absence of test cases, i.e., Fuzzing:
 - Memory errors: Program Crashes (SIGSEGV) => Access/Execute invalid memory.
 - There could be bugs which do not result in SIGSEGV.

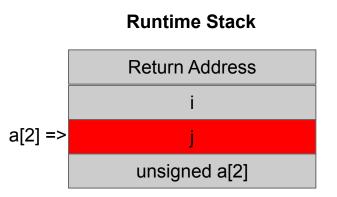

Silent Bugs

<pre>int main() {</pre>
unsigned i, j, a[2];
scanf("%u %u", &i, &j);
a[i] = j;
•••
return 0;
}

Here, if i == 2 (off by one error), the program <u>may</u> <u>not crash</u>?

• Why?

Runtime Stack



Silent Bugs

<pre>int main() {</pre>
unsigned i, j, a[2];
scanf("%u %u", &i, &j);
a[i] = j;
return 0;
}

Here, if i == 2 (off by one error), the program may not crash?

• Why?

Improving bug detection

- The behavior of a bug, especially memory corruption, depends on the program state and execution environment.
- Can we detect these bugs without relying on program state?
 - Fuzzing: we detect a bug if it results in the program crash (SIGSEGV).
 - Idea: Make all bugs result in program crashes.

Sanitizers

- Change the program such that we detect bugs when they occur instead of waiting for the bugs to result in crash.
- Mechanism: Instrument the program by adding additional checks for detecting bugs.

Sanitizers: Overview

Original Program

.....

Instrumentation

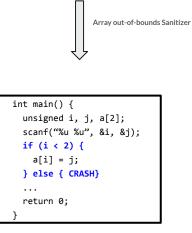
Instrumented Program

Original Program

int main() {
 unsigned i, j, a[2];
 scanf("%u %u", &i, &j);
 a[i] = j;
 ...
 return 0;
}

Array out-of-bounds Sanitizer

int main() {
 unsigned i, j, a[2];
 scanf("%u %u", &i, &j);
 if (i < 2) {
 a[i] = j;
 } else { CRASH}
 ...
 return 0;
}</pre>

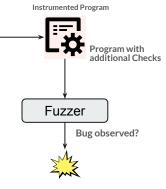

Instrumented Program

Real world Sanitizers

- Usually bug specific. Examples:
 - MemorySanitizer: Detects *uninitialized reads*.
 - AddressSanitizer: Detects invalid memory accesses.
- **General instrumentation idea**: At all instructions in the program where the bug can occur, add a check to detect the bug.
 - AddressSanitizer: Detects Invalid Memory Accesses.
 - Invalid Memory access can occur at load and store instructions.
 - Instrument every load and store to check if the used address is invalid (i.e., does not belong to a program object).

int main() { unsigned i, j, a[2]; scanf("%u %u", &i, &j); a[i] = j; ... return 0; }

Original Program



Sanitizers: Usage

Original Program

....

Instrumentation

Instrumented Program

Why can't we always use sanitizers?

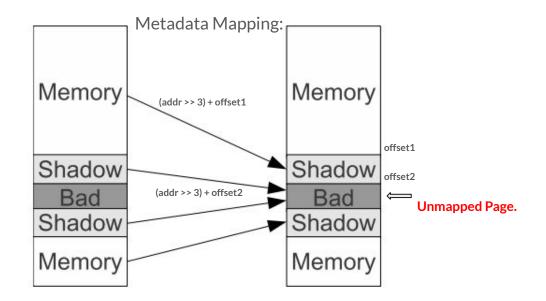
They detect bugs at runtime => Why can't we just use sanitizers and not worry about bugs, as they will never lead to vulnerabilities.

THERE'S NO FREE LUNCH

Sanitizers introduce a lot of overhead.

Sanitizers Implementation

- Sanitizers need to maintain lot of additional state to check for the possibility of bugs.
 - AddressSanitizer: Detects Invalid Memory Accesses:
 - Need to maintain metadata regarding which memory (i.e., address) is valid v/s invalid.
 - Tricky: Handling dynamic memory allocation.


Popular research direction: Smart and efficient way to maintain metadata.

AddressSanitizer (ASan)

- Metadata (or shadow memory):
 - One eighth of the virtual memory will be used to maintain metadata:
 - One bit of metadata for each byte of application memory.
 - Bit is zero: The corresponding address is valid else invalid.
- Accessing metadata for a given address (Addr):
 - Direct Mapping:

```
// Checking 8-byte access
MetadataAddr = (Addr >> 3) + Offset;
if (*MetadataAddr != 0)
   ReportAndCrash(Addr);
```

ASan: Mapping

ASan: Usage

a.c

void foo(T *a) { *a = 0x1234; }

 \implies

clang -fsanitize=address a.c -c -DT=long

push %rax mov %rdi,%rax shr \$0x3,%rax mov \$0x10000000000,%rcx or %rax,%rcx cmpb \$0x0,(%rcx) # Compare Shadow with 0 jne 23 <foo+0x23> # To Error movq \$0x1234,(%rdi) # Original store pop %rax retq callq __asan_report_store8 # Error

ASan: Conclusion

• One of the most popular sanitizers: Used extensively in fuzzing.

- Overhead:
 - Adds additional instructions:
 - Memory overhead: ~3X (Consumes thrice the amount of memory).
 - Slowdown: ~2X (Runs at half the speed).

ThreadSanitizer

• Detects data races.

• Where can data races happen i.e., which instructions it should track?

• How to detect a data race? What metadata should be maintained?

Other sanitizers (supported by clang)

- -fsanitize=address: AddressSanitizer, a memory error detector.
- -fsanitize=thread: ThreadSanitizer, a data race detector.
- -fsanitize=memory: MemorySanitizer, a detector of uninitialized reads. Requires instrumentation of all program code.
- -fsanitize=undefined: UndefinedBehaviorSanitizer, a fast and compatible undefined behavior checker.
- -fsanitize=dataflow: DataFlowSanitizer, a general data flow analysis.

Sanitizers: Final Thoughts

- They increase the ability of fuzzing to find bugs.
- Always use them with fuzzers: Performance impact does not matter much lets throw more machines.
- New sanitizers => Always appreciated and could have a high impact.
- Decreasing overhead of sanitizers: Appreciated but may have less impact.